Technical requirements of big data


2.     What are the technical requirements of big data?


This data boom presents a massive opportunity to find new efficiencies, detect previously unseen patterns and increase levels of service to citizens, but Big Data analytics can’t exist in a vacuum. Because of the enormous quantities of data involved in these solutions, they must incorporate a robust infrastructure for storage, processing and networking, in addition to analytics software.


1.     Storage Solutions

Often, organizations already possess enough storage in-house to support a Big Data initiative. (After all, the data that will be processed and analyzed via a Big Data solution is already living somewhere.) However, agencies may decide to invest in storage solutions that are optimized for Big Data. While not necessary for all Big Data deployments, flash storage is especially attractive due to its performance advantages and high availability.

 

2. Processing Power

 

Servers intended for Big Data analytics must have enough processing power to support this application. Some analytics vendors, such as Splunk, offer cloud processing options, which can be especially attractive to agencies that experience seasonal peaks. If an agency has quarterly filing deadlines, for example, that organization might securely spin up on-demand processing power in the cloud to process the wave of data that comes in around those dates, while relying on on-premises processing resources to handle the steadier, day-to-day demands.

 

3. Analytics Software

 

Agencies must select Big Data analytics products based not only on what functions the software can complete, but also on factors such as data security and ease of use. One popular function of Big Data analytics software is predictive analytics — the analysis of current data to make predictions about the future. Predictive analytics are already used across a number of fields, including actuarial science, marketing and financial services. Government applications include fraud detection, capacity planning and child protection, with some child welfare agencies using the technology to flag high-risk cases.

 

4. Networking Hardware

 

The massive quantities of information that must be shuttled back and forth in a Big Data initiative require robust networking hardware. Many organizations are already operating with networking hardware that facilitates 10-gigabit connections, and may have to make only minor modifications — such as the installation of new ports — to accommodate a Big Data initiative. Securing network transports is an essential step in any upgrade, especially for traffic that crosses network boundaries.

.

.

.

https://fedtechmagazine.com/article/2016/12/4-infrastructure-requirements-any-big-data-initiative

Comments

Popular posts from this blog

Limitations of traditional data analysis

Traditional data analysis